ok

Mini Shell

Direktori : /var/opt/nydus/ops/oscrypto/
Upload File :
Current File : //var/opt/nydus/ops/oscrypto/_ecdsa.py

# coding: utf-8
from __future__ import unicode_literals, division, absolute_import, print_function

import hashlib
import hmac
import sys

from . import backend
from ._asn1 import (
    Certificate,
    DSASignature,
    ECDomainParameters,
    ECPointBitString,
    ECPrivateKey,
    int_from_bytes,
    PrivateKeyAlgorithm,
    PrivateKeyInfo,
    PublicKeyAlgorithm,
    PublicKeyInfo,
)
from ._errors import pretty_message
from ._types import type_name, byte_cls
from .util import rand_bytes
from .errors import SignatureError

if sys.version_info < (3,):
    chr_cls = chr
    range = xrange  # noqa

else:
    def chr_cls(num):
        return bytes([num])


_backend = backend()


if _backend != 'winlegacy':
    # This pure-Python ECDSA code is only suitable for use on client machines,
    # and is only needed on Windows 5.x (XP/2003). For testing sake it is
    # possible to force use of it on newer versions of Windows.
    raise SystemError('Pure-python ECDSA code is only for Windows XP/2003')


__all__ = [
    'ec_generate_pair',
    'ec_compute_public_key_point',
    'ec_public_key_info',
    'ecdsa_sign',
    'ecdsa_verify',
]


CURVE_BYTES = {
    'secp256r1': 32,
    'secp384r1': 48,
    'secp521r1': 66,
}

CURVE_EXTRA_BITS = {
    'secp256r1': 0,
    'secp384r1': 0,
    'secp521r1': 7,
}


def ec_generate_pair(curve):
    """
    Generates a EC public/private key pair

    :param curve:
        A unicode string. Valid values include "secp256r1", "secp384r1" and
        "secp521r1".

    :raises:
        ValueError - when any of the parameters contain an invalid value
        TypeError - when any of the parameters are of the wrong type

    :return:
        A 2-element tuple of (asn1crypto.keys.PublicKeyInfo,
        asn1crypto.keys.PrivateKeyInfo)
    """

    if curve not in set(['secp256r1', 'secp384r1', 'secp521r1']):
        raise ValueError(pretty_message(
            '''
            curve must be one of "secp256r1", "secp384r1", "secp521r1", not %s
            ''',
            repr(curve)
        ))

    curve_num_bytes = CURVE_BYTES[curve]
    curve_base_point = {
        'secp256r1': SECP256R1_BASE_POINT,
        'secp384r1': SECP384R1_BASE_POINT,
        'secp521r1': SECP521R1_BASE_POINT,
    }[curve]

    while True:
        private_key_bytes = rand_bytes(curve_num_bytes)
        private_key_int = int_from_bytes(private_key_bytes, signed=False)

        if private_key_int > 0 and private_key_int < curve_base_point.order:
            break

    private_key_info = PrivateKeyInfo({
        'version': 0,
        'private_key_algorithm': PrivateKeyAlgorithm({
            'algorithm': 'ec',
            'parameters': ECDomainParameters(
                name='named',
                value=curve
            )
        }),
        'private_key': ECPrivateKey({
            'version': 'ecPrivkeyVer1',
            'private_key': private_key_int
        }),
    })

    ec_point = ec_compute_public_key_point(private_key_info)
    private_key_info['private_key'].parsed['public_key'] = ec_point.copy()

    return (ec_public_key_info(ec_point, curve), private_key_info)


def ec_compute_public_key_point(private_key):
    """
    Constructs the PublicKeyInfo for a PrivateKeyInfo

    :param private_key:
        An asn1crypto.keys.PrivateKeyInfo object

    :raises:
        ValueError - when any of the parameters contain an invalid value

    :return:
        An asn1crypto.keys.ECPointBitString object
    """

    if not isinstance(private_key, PrivateKeyInfo):
        raise TypeError(pretty_message(
            '''
            private_key must be an instance of the
            asn1crypto.keys.PrivateKeyInfo class, not %s
            ''',
            type_name(private_key)
        ))

    curve_type, details = private_key.curve

    if curve_type == 'implicit_ca':
        raise ValueError(pretty_message(
            '''
            Unable to compute public key for EC key using Implicit CA
            parameters
            '''
        ))

    if curve_type == 'specified':
        raise ValueError(pretty_message(
            '''
            Unable to compute public key for EC key over a specified field
            '''
        ))

    elif curve_type == 'named':
        if details not in set(['secp256r1', 'secp384r1', 'secp521r1']):
            raise ValueError(pretty_message(
                '''
                Named curve must be one of "secp256r1", "secp384r1", "secp521r1", not %s
                ''',
                repr(details)
            ))

        base_point = {
            'secp256r1': SECP256R1_BASE_POINT,
            'secp384r1': SECP384R1_BASE_POINT,
            'secp521r1': SECP521R1_BASE_POINT,
        }[details]

    public_point = base_point * private_key['private_key'].parsed['private_key'].native
    return ECPointBitString.from_coords(public_point.x, public_point.y)


def ec_public_key_info(public_key_point, curve):
    """
    Constructs the PublicKeyInfo for an ECPointBitString

    :param private_key:
        An asn1crypto.keys.ECPointBitString object

    :param curve:
        A unicode string of the curve name - one of secp256r1, secp384r1 or secp521r1

    :raises:
        ValueError - when any of the parameters contain an invalid value

    :return:
        An asn1crypto.keys.PublicKeyInfo object
    """

    if curve not in set(['secp256r1', 'secp384r1', 'secp521r1']):
        raise ValueError(pretty_message(
            '''
            curve must be one of "secp256r1", "secp384r1", "secp521r1", not %s
            ''',
            repr(curve)
        ))

    return PublicKeyInfo({
        'algorithm': PublicKeyAlgorithm({
            'algorithm': 'ec',
            'parameters': ECDomainParameters(
                name='named',
                value=curve
            )
        }),
        'public_key': public_key_point,
    })


def ecdsa_sign(private_key, data, hash_algorithm):
    """
    Generates an ECDSA signature in pure Python (thus slow)

    :param private_key:
        The PrivateKey to generate the signature with

    :param data:
        A byte string of the data the signature is for

    :param hash_algorithm:
        A unicode string of "sha1", "sha256", "sha384" or "sha512"

    :raises:
        ValueError - when any of the parameters contain an invalid value
        TypeError - when any of the parameters are of the wrong type
        OSError - when an error is returned by the OS crypto library

    :return:
        A byte string of the signature
    """

    if not hasattr(private_key, 'asn1') or not isinstance(private_key.asn1, PrivateKeyInfo):
        raise TypeError(pretty_message(
            '''
            private_key must be an instance of the
            oscrypto.asymmetric.PrivateKey class, not %s
            ''',
            type_name(private_key)
        ))

    curve_name = private_key.curve
    if curve_name not in set(['secp256r1', 'secp384r1', 'secp521r1']):
        raise ValueError(pretty_message(
            '''
            private_key does not use one of the named curves secp256r1,
            secp384r1 or secp521r1
            '''
        ))

    if not isinstance(data, byte_cls):
        raise TypeError(pretty_message(
            '''
            data must be a byte string, not %s
            ''',
            type_name(data)
        ))

    if hash_algorithm not in set(['sha1', 'sha224', 'sha256', 'sha384', 'sha512']):
        raise ValueError(pretty_message(
            '''
            hash_algorithm must be one of "sha1", "sha224", "sha256", "sha384",
            "sha512", not %s
            ''',
            repr(hash_algorithm)
        ))

    hash_func = getattr(hashlib, hash_algorithm)

    ec_private_key = private_key.asn1['private_key'].parsed
    private_key_bytes = ec_private_key['private_key'].contents
    private_key_int = ec_private_key['private_key'].native

    curve_num_bytes = CURVE_BYTES[curve_name]
    curve_base_point = {
        'secp256r1': SECP256R1_BASE_POINT,
        'secp384r1': SECP384R1_BASE_POINT,
        'secp521r1': SECP521R1_BASE_POINT,
    }[curve_name]

    n = curve_base_point.order

    # RFC 6979 section 3.2

    # a.
    digest = hash_func(data).digest()
    hash_length = len(digest)

    h = int_from_bytes(digest, signed=False) % n

    # b.
    V = b'\x01' * hash_length

    # c.
    K = b'\x00' * hash_length

    # d.
    K = hmac.new(K, V + b'\x00' + private_key_bytes + digest, hash_func).digest()

    # e.
    V = hmac.new(K, V, hash_func).digest()

    # f.
    K = hmac.new(K, V + b'\x01' + private_key_bytes + digest, hash_func).digest()

    # g.
    V = hmac.new(K, V, hash_func).digest()

    # h.
    r = 0
    s = 0
    while True:
        # h. 1
        T = b''

        # h. 2
        while len(T) < curve_num_bytes:
            V = hmac.new(K, V, hash_func).digest()
            T += V

        # h. 3
        k = int_from_bytes(T[0:curve_num_bytes], signed=False)
        if k == 0 or k >= n:
            continue

        # Calculate the signature in the loop in case we need a new k
        r = (curve_base_point * k).x % n
        if r == 0:
            continue

        s = (inverse_mod(k, n) * (h + (private_key_int * r) % n)) % n
        if s == 0:
            continue

        break

    return DSASignature({'r': r, 's': s}).dump()


def ecdsa_verify(certificate_or_public_key, signature, data, hash_algorithm):
    """
    Verifies an ECDSA signature in pure Python (thus slow)

    :param certificate_or_public_key:
        A Certificate or PublicKey instance to verify the signature with

    :param signature:
        A byte string of the signature to verify

    :param data:
        A byte string of the data the signature is for

    :param hash_algorithm:
        A unicode string of "md5", "sha1", "sha256", "sha384" or "sha512"

    :raises:
        oscrypto.errors.SignatureError - when the signature is determined to be invalid
        ValueError - when any of the parameters contain an invalid value
        TypeError - when any of the parameters are of the wrong type
        OSError - when an error is returned by the OS crypto library
    """

    has_asn1 = hasattr(certificate_or_public_key, 'asn1')
    if not has_asn1 or not isinstance(certificate_or_public_key.asn1, (PublicKeyInfo, Certificate)):
        raise TypeError(pretty_message(
            '''
            certificate_or_public_key must be an instance of the
            oscrypto.asymmetric.PublicKey or oscrypto.asymmetric.Certificate
            classes, not %s
            ''',
            type_name(certificate_or_public_key)
        ))

    curve_name = certificate_or_public_key.curve
    if curve_name not in set(['secp256r1', 'secp384r1', 'secp521r1']):
        raise ValueError(pretty_message(
            '''
            certificate_or_public_key does not use one of the named curves
            secp256r1, secp384r1 or secp521r1
            '''
        ))

    if not isinstance(signature, byte_cls):
        raise TypeError(pretty_message(
            '''
            signature must be a byte string, not %s
            ''',
            type_name(signature)
        ))

    if not isinstance(data, byte_cls):
        raise TypeError(pretty_message(
            '''
            data must be a byte string, not %s
            ''',
            type_name(data)
        ))

    if hash_algorithm not in set(['sha1', 'sha224', 'sha256', 'sha384', 'sha512']):
        raise ValueError(pretty_message(
            '''
            hash_algorithm must be one of "sha1", "sha224", "sha256", "sha384",
            "sha512", not %s
            ''',
            repr(hash_algorithm)
        ))

    asn1 = certificate_or_public_key.asn1
    if isinstance(asn1, Certificate):
        asn1 = asn1.public_key

    curve_base_point = {
        'secp256r1': SECP256R1_BASE_POINT,
        'secp384r1': SECP384R1_BASE_POINT,
        'secp521r1': SECP521R1_BASE_POINT,
    }[curve_name]

    x, y = asn1['public_key'].to_coords()
    n = curve_base_point.order

    # Validates that the point is valid
    public_key_point = PrimePoint(curve_base_point.curve, x, y, n)

    try:
        signature = DSASignature.load(signature)
        r = signature['r'].native
        s = signature['s'].native
    except (ValueError):
        raise SignatureError('Signature is invalid')

    invalid = 0

    # Check r is valid
    invalid |= r < 1
    invalid |= r >= n

    # Check s is valid
    invalid |= s < 1
    invalid |= s >= n

    if invalid:
        raise SignatureError('Signature is invalid')

    hash_func = getattr(hashlib, hash_algorithm)

    digest = hash_func(data).digest()

    z = int_from_bytes(digest, signed=False) % n
    w = inverse_mod(s, n)
    u1 = (z * w) % n
    u2 = (r * w) % n
    hash_point = (curve_base_point * u1) + (public_key_point * u2)
    if r != (hash_point.x % n):
        raise SignatureError('Signature is invalid')


"""
Classes and objects to represent prime-field elliptic curves and points on them.
Exports the following items:

 - PrimeCurve()
 - PrimePoint()
 - SECP192R1_CURVE
 - SECP192R1_BASE_POINT
 - SECP224R1_CURVE
 - SECP224R1_BASE_POINT
 - SECP256R1_CURVE
 - SECP256R1_BASE_POINT
 - SECP384R1_CURVE
 - SECP384R1_BASE_POINT
 - SECP521R1_CURVE
 - SECP521R1_BASE_POINT

The curve constants are all PrimeCurve() objects and the base point constants
are all PrimePoint() objects.

Some of the following source code is derived from
http://webpages.charter.net/curryfans/peter/downloads.html, but has been heavily
modified to fit into this projects lint settings. The original project license
is listed below:

Copyright (c) 2014 Peter Pearson

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""


def inverse_mod(a, p):
    """
    Compute the modular inverse of a (mod p)

    :param a:
        An integer

    :param p:
        An integer

    :return:
        An integer
    """

    if a < 0 or p <= a:
        a = a % p

    # From Ferguson and Schneier, roughly:

    c, d = a, p
    uc, vc, ud, vd = 1, 0, 0, 1
    while c != 0:
        q, c, d = divmod(d, c) + (c,)
        uc, vc, ud, vd = ud - q * uc, vd - q * vc, uc, vc

    # At this point, d is the GCD, and ud*a+vd*p = d.
    # If d == 1, this means that ud is a inverse.

    assert d == 1
    if ud > 0:
        return ud
    else:
        return ud + p


class PrimeCurve():
    """
    Elliptic curve over a prime field. Characteristic two field curves are not
    supported.
    """

    def __init__(self, p, a, b):
        """
        The curve of points satisfying y^2 = x^3 + a*x + b (mod p)

        :param p:
            The prime number as an integer

        :param a:
            The component a as an integer

        :param b:
            The component b as an integer
        """

        self.p = p
        self.a = a
        self.b = b

    def contains(self, point):
        """
        :param point:
            A Point object

        :return:
            Boolean if the point is on this curve
        """

        y2 = point.y * point.y
        x3 = point.x * point.x * point.x
        return (y2 - (x3 + self.a * point.x + self.b)) % self.p == 0


class PrimePoint():
    """
    A point on a prime-field elliptic curve
    """

    def __init__(self, curve, x, y, order=None):
        """
        :param curve:
            A PrimeCurve object

        :param x:
            The x coordinate of the point as an integer

        :param y:
            The y coordinate of the point as an integer

        :param order:
            The order of the point, as an integer - optional
        """

        self.curve = curve
        self.x = x
        self.y = y
        self.order = order

        # self.curve is allowed to be None only for INFINITY:
        if self.curve:
            if not self.curve.contains(self):
                raise ValueError('Invalid EC point')

        if self.order:
            if self * self.order != INFINITY:
                raise ValueError('Invalid EC point')

    def __cmp__(self, other):
        """
        :param other:
            A PrimePoint object

        :return:
            0 if identical, 1 otherwise
        """
        if self.curve == other.curve and self.x == other.x and self.y == other.y:
            return 0
        else:
            return 1

    def __add__(self, other):
        """
        :param other:
            A PrimePoint object

        :return:
            A PrimePoint object
        """

        # X9.62 B.3:

        if other == INFINITY:
            return self
        if self == INFINITY:
            return other
        assert self.curve == other.curve
        if self.x == other.x:
            if (self.y + other.y) % self.curve.p == 0:
                return INFINITY
            else:
                return self.double()

        p = self.curve.p

        l_ = ((other.y - self.y) * inverse_mod(other.x - self.x, p)) % p

        x3 = (l_ * l_ - self.x - other.x) % p
        y3 = (l_ * (self.x - x3) - self.y) % p

        return PrimePoint(self.curve, x3, y3)

    def __mul__(self, other):
        """
        :param other:
            An integer to multiple the Point by

        :return:
            A PrimePoint object
        """

        def leftmost_bit(x):
            assert x > 0
            result = 1
            while result <= x:
                result = 2 * result
            return result // 2

        e = other
        if self.order:
            e = e % self.order
        if e == 0:
            return INFINITY
        if self == INFINITY:
            return INFINITY
        assert e > 0

        # From X9.62 D.3.2:

        e3 = 3 * e
        negative_self = PrimePoint(self.curve, self.x, -self.y, self.order)
        i = leftmost_bit(e3) // 2
        result = self
        # print "Multiplying %s by %d (e3 = %d):" % ( self, other, e3 )
        while i > 1:
            result = result.double()
            if (e3 & i) != 0 and (e & i) == 0:
                result = result + self
            if (e3 & i) == 0 and (e & i) != 0:
                result = result + negative_self
            # print ". . . i = %d, result = %s" % ( i, result )
            i = i // 2

        return result

    def __rmul__(self, other):
        """
        :param other:
            An integer to multiple the Point by

        :return:
            A PrimePoint object
        """

        return self * other

    def double(self):
        """
        :return:
            A PrimePoint object that is twice this point
        """

        # X9.62 B.3:

        p = self.curve.p
        a = self.curve.a

        l_ = ((3 * self.x * self.x + a) * inverse_mod(2 * self.y, p)) % p

        x3 = (l_ * l_ - 2 * self.x) % p
        y3 = (l_ * (self.x - x3) - self.y) % p

        return PrimePoint(self.curve, x3, y3)


# This one point is the Point At Infinity for all purposes:
INFINITY = PrimePoint(None, None, None)


# NIST Curve P-192:
SECP192R1_CURVE = PrimeCurve(
    6277101735386680763835789423207666416083908700390324961279,
    -3,
    0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
)
SECP192R1_BASE_POINT = PrimePoint(
    SECP192R1_CURVE,
    0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012,
    0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811,
    6277101735386680763835789423176059013767194773182842284081
)


# NIST Curve P-224:
SECP224R1_CURVE = PrimeCurve(
    26959946667150639794667015087019630673557916260026308143510066298881,
    -3,
    0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
)
SECP224R1_BASE_POINT = PrimePoint(
    SECP224R1_CURVE,
    0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21,
    0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34,
    26959946667150639794667015087019625940457807714424391721682722368061
)


# NIST Curve P-256:
SECP256R1_CURVE = PrimeCurve(
    115792089210356248762697446949407573530086143415290314195533631308867097853951,
    -3,
    0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
)
SECP256R1_BASE_POINT = PrimePoint(
    SECP256R1_CURVE,
    0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,
    0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5,
    115792089210356248762697446949407573529996955224135760342422259061068512044369
)


# NIST Curve P-384:
SECP384R1_CURVE = PrimeCurve(
    39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319,  # noqa
    -3,
    0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
)
SECP384R1_BASE_POINT = PrimePoint(
    SECP384R1_CURVE,
    0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7,
    0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f,
    39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
)


# NIST Curve P-521:
SECP521R1_CURVE = PrimeCurve(
    6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151,  # noqa
    -3,
    0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00  # noqa
)
SECP521R1_BASE_POINT = PrimePoint(
    SECP521R1_CURVE,
    0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66,  # noqa
    0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650,  # noqa
    6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449  # noqa
)

Zerion Mini Shell 1.0