ok

Mini Shell

Direktori : /proc/self/root/var/opt/nydus/ops/mysql/opentelemetry/sdk/_logs/_internal/
Upload File :
Current File : //proc/self/root/var/opt/nydus/ops/mysql/opentelemetry/sdk/_logs/_internal/__init__.py

# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
import atexit
import concurrent.futures
import json
import logging
import threading
import traceback

from time import time_ns
from typing import Any, Callable, Optional, Tuple, Union

from mysql.opentelemetry._logs import (
    Logger as APILogger,
    LoggerProvider as APILoggerProvider,
    LogRecord as APILogRecord,
    SeverityNumber,
    get_logger,
    get_logger_provider,
    std_to_otel,
)
from mysql.opentelemetry.sdk.resources import Resource
from mysql.opentelemetry.sdk.util import ns_to_iso_str
from mysql.opentelemetry.sdk.util.instrumentation import InstrumentationScope
from mysql.opentelemetry.semconv.trace import SpanAttributes
from mysql.opentelemetry.trace import format_span_id, format_trace_id, get_current_span
from mysql.opentelemetry.trace.span import TraceFlags
from mysql.opentelemetry.util.types import Attributes

_logger = logging.getLogger(__name__)


class LogRecord(APILogRecord):
    """A LogRecord instance represents an event being logged.

    LogRecord instances are created and emitted via `Logger`
    every time something is logged. They contain all the information
    pertinent to the event being logged.
    """

    def __init__(
        self,
        timestamp: Optional[int] = None,
        observed_timestamp: Optional[int] = None,
        trace_id: Optional[int] = None,
        span_id: Optional[int] = None,
        trace_flags: Optional[TraceFlags] = None,
        severity_text: Optional[str] = None,
        severity_number: Optional[SeverityNumber] = None,
        body: Optional[Any] = None,
        resource: Optional[Resource] = None,
        attributes: Optional[Attributes] = None,
    ):
        super().__init__(
            **{
                "timestamp": timestamp,
                "observed_timestamp": observed_timestamp,
                "trace_id": trace_id,
                "span_id": span_id,
                "trace_flags": trace_flags,
                "severity_text": severity_text,
                "severity_number": severity_number,
                "body": body,
                "attributes": attributes,
            }
        )
        self.resource = resource

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, LogRecord):
            return NotImplemented
        return self.__dict__ == other.__dict__

    def to_json(self, indent=4) -> str:
        return json.dumps(
            {
                "body": self.body,
                "severity_number": repr(self.severity_number),
                "severity_text": self.severity_text,
                "attributes": self.attributes,
                "timestamp": ns_to_iso_str(self.timestamp),
                "trace_id": f"0x{format_trace_id(self.trace_id)}"
                if self.trace_id is not None
                else "",
                "span_id": f"0x{format_span_id(self.span_id)}"
                if self.span_id is not None
                else "",
                "trace_flags": self.trace_flags,
                "resource": repr(self.resource.attributes) if self.resource else "",
            },
            indent=indent,
        )


class LogData:
    """Readable LogRecord data plus associated InstrumentationLibrary."""

    def __init__(
        self,
        log_record: LogRecord,
        instrumentation_scope: InstrumentationScope,
    ):
        self.log_record = log_record
        self.instrumentation_scope = instrumentation_scope


class LogRecordProcessor(abc.ABC):
    """Interface to hook the log record emitting action.

    Log processors can be registered directly using
    :func:`LoggerProvider.add_log_record_processor` and they are invoked
    in the same order as they were registered.
    """

    @abc.abstractmethod
    def emit(self, log_data: LogData):
        """Emits the `LogData`"""

    @abc.abstractmethod
    def shutdown(self):
        """Called when a :class:`mysql.opentelemetry.sdk._logs.Logger` is shutdown"""

    @abc.abstractmethod
    def force_flush(self, timeout_millis: int = 30000):
        """Export all the received logs to the configured Exporter that have not yet
        been exported.

        Args:
            timeout_millis: The maximum amount of time to wait for logs to be
                exported.

        Returns:
            False if the timeout is exceeded, True otherwise.
        """


# Temporary fix until https://github.com/PyCQA/pylint/issues/4098 is resolved
# pylint:disable=no-member
class SynchronousMultiLogRecordProcessor(LogRecordProcessor):
    """Implementation of class:`LogRecordProcessor` that forwards all received
    events to a list of log processors sequentially.

    The underlying log processors are called in sequential order as they were
    added.
    """

    def __init__(self):
        # use a tuple to avoid race conditions when adding a new log and
        # iterating through it on "emit".
        self._log_record_processors = ()  # type: Tuple[LogRecordProcessor, ...]
        self._lock = threading.Lock()

    def add_log_record_processor(
        self, log_record_processor: LogRecordProcessor
    ) -> None:
        """Adds a Logprocessor to the list of log processors handled by this instance"""
        with self._lock:
            self._log_record_processors += (log_record_processor,)

    def emit(self, log_data: LogData) -> None:
        for lp in self._log_record_processors:
            lp.emit(log_data)

    def shutdown(self) -> None:
        """Shutdown the log processors one by one"""
        for lp in self._log_record_processors:
            lp.shutdown()

    def force_flush(self, timeout_millis: int = 30000) -> bool:
        """Force flush the log processors one by one

        Args:
            timeout_millis: The maximum amount of time to wait for logs to be
                exported. If the first n log processors exceeded the timeout
                then remaining log processors will not be flushed.

        Returns:
            True if all the log processors flushes the logs within timeout,
            False otherwise.
        """
        deadline_ns = time_ns() + timeout_millis * 1000000
        for lp in self._log_record_processors:
            current_ts = time_ns()
            if current_ts >= deadline_ns:
                return False

            if not lp.force_flush((deadline_ns - current_ts) // 1000000):
                return False

        return True


class ConcurrentMultiLogRecordProcessor(LogRecordProcessor):
    """Implementation of :class:`LogRecordProcessor` that forwards all received
    events to a list of log processors in parallel.

    Calls to the underlying log processors are forwarded in parallel by
    submitting them to a thread pool executor and waiting until each log
    processor finished its work.

    Args:
        max_workers: The number of threads managed by the thread pool executor
            and thus defining how many log processors can work in parallel.
    """

    def __init__(self, max_workers: int = 2):
        # use a tuple to avoid race conditions when adding a new log and
        # iterating through it on "emit".
        self._log_record_processors = ()  # type: Tuple[LogRecordProcessor, ...]
        self._lock = threading.Lock()
        self._executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_workers)

    def add_log_record_processor(self, log_record_processor: LogRecordProcessor):
        with self._lock:
            self._log_record_processors += (log_record_processor,)

    def _submit_and_wait(
        self,
        func: Callable[[LogRecordProcessor], Callable[..., None]],
        *args: Any,
        **kwargs: Any,
    ):
        futures = []
        for lp in self._log_record_processors:
            future = self._executor.submit(func(lp), *args, **kwargs)
            futures.append(future)
        for future in futures:
            future.result()

    def emit(self, log_data: LogData):
        self._submit_and_wait(lambda lp: lp.emit, log_data)

    def shutdown(self):
        self._submit_and_wait(lambda lp: lp.shutdown)

    def force_flush(self, timeout_millis: int = 30000) -> bool:
        """Force flush the log processors in parallel.

        Args:
            timeout_millis: The maximum amount of time to wait for logs to be
                exported.

        Returns:
            True if all the log processors flushes the logs within timeout,
            False otherwise.
        """
        futures = []
        for lp in self._log_record_processors:
            future = self._executor.submit(lp.force_flush, timeout_millis)
            futures.append(future)

        done_futures, not_done_futures = concurrent.futures.wait(
            futures, timeout_millis / 1e3
        )

        if not_done_futures:
            return False

        for future in done_futures:
            if not future.result():
                return False

        return True


# skip natural LogRecord attributes
# http://docs.python.org/library/logging.html#logrecord-attributes
_RESERVED_ATTRS = frozenset(
    (
        "asctime",
        "args",
        "created",
        "exc_info",
        "exc_text",
        "filename",
        "funcName",
        "message",
        "levelname",
        "levelno",
        "lineno",
        "module",
        "msecs",
        "msg",
        "name",
        "pathname",
        "process",
        "processName",
        "relativeCreated",
        "stack_info",
        "thread",
        "threadName",
    )
)


class LoggingHandler(logging.Handler):
    """A handler class which writes logging records, in OTLP format, to
    a network destination or file. Supports signals from the `logging` module.
    https://docs.python.org/3/library/logging.html
    """

    def __init__(
        self,
        level=logging.NOTSET,
        logger_provider=None,
    ) -> None:
        super().__init__(level=level)
        self._logger_provider = logger_provider or get_logger_provider()
        self._logger = get_logger(__name__, logger_provider=self._logger_provider)

    @staticmethod
    def _get_attributes(record: logging.LogRecord) -> Attributes:
        attributes = {k: v for k, v in vars(record).items() if k not in _RESERVED_ATTRS}
        if record.exc_info:
            exc_type = ""
            message = ""
            stack_trace = ""
            exctype, value, tb = record.exc_info
            if exctype is not None:
                exc_type = exctype.__name__
            if value is not None and value.args:
                message = value.args[0]
            if tb is not None:
                # https://github.com/open-telemetry/opentelemetry-specification/blob/9fa7c656b26647b27e485a6af7e38dc716eba98a/specification/trace/semantic_conventions/exceptions.md#stacktrace-representation
                stack_trace = "".join(traceback.format_exception(*record.exc_info))
            attributes[SpanAttributes.EXCEPTION_TYPE] = exc_type
            attributes[SpanAttributes.EXCEPTION_MESSAGE] = message
            attributes[SpanAttributes.EXCEPTION_STACKTRACE] = stack_trace
        return attributes

    def _translate(self, record: logging.LogRecord) -> LogRecord:
        timestamp = int(record.created * 1e9)
        span_context = get_current_span().get_span_context()
        attributes = self._get_attributes(record)
        severity_number = std_to_otel(record.levelno)
        return LogRecord(
            timestamp=timestamp,
            trace_id=span_context.trace_id,
            span_id=span_context.span_id,
            trace_flags=span_context.trace_flags,
            severity_text=record.levelname,
            severity_number=severity_number,
            body=record.getMessage(),
            resource=self._logger.resource,
            attributes=attributes,
        )

    def emit(self, record: logging.LogRecord) -> None:
        """
        Emit a record.

        The record is translated to OTel format, and then sent across the pipeline.
        """
        self._logger.emit(self._translate(record))

    def flush(self) -> None:
        """
        Flushes the logging output.
        """
        self._logger_provider.force_flush()


class Logger(APILogger):
    def __init__(
        self,
        resource: Resource,
        multi_log_record_processor: Union[
            SynchronousMultiLogRecordProcessor,
            ConcurrentMultiLogRecordProcessor,
        ],
        instrumentation_scope: InstrumentationScope,
    ):
        super().__init__(
            instrumentation_scope.name,
            instrumentation_scope.version,
            instrumentation_scope.schema_url,
        )
        self._resource = resource
        self._multi_log_record_processor = multi_log_record_processor
        self._instrumentation_scope = instrumentation_scope

    @property
    def resource(self):
        return self._resource

    def emit(self, record: LogRecord):
        """Emits the :class:`LogData` by associating :class:`LogRecord`
        and instrumentation info.
        """
        log_data = LogData(record, self._instrumentation_scope)
        self._multi_log_record_processor.emit(log_data)


class LoggerProvider(APILoggerProvider):
    def __init__(
        self,
        resource: Resource = Resource.create(),
        shutdown_on_exit: bool = True,
        multi_log_record_processor: Union[
            SynchronousMultiLogRecordProcessor,
            ConcurrentMultiLogRecordProcessor,
        ] = None,
    ):
        self._resource = resource
        self._multi_log_record_processor = (
            multi_log_record_processor or SynchronousMultiLogRecordProcessor()
        )
        self._at_exit_handler = None
        if shutdown_on_exit:
            self._at_exit_handler = atexit.register(self.shutdown)

    @property
    def resource(self):
        return self._resource

    def get_logger(
        self,
        name: str,
        version: Optional[str] = None,
        schema_url: Optional[str] = None,
    ) -> Logger:
        return Logger(
            self._resource,
            self._multi_log_record_processor,
            InstrumentationScope(
                name,
                version,
                schema_url,
            ),
        )

    def add_log_record_processor(self, log_record_processor: LogRecordProcessor):
        """Registers a new :class:`LogRecordProcessor` for this `LoggerProvider` instance.

        The log processors are invoked in the same order they are registered.
        """
        self._multi_log_record_processor.add_log_record_processor(log_record_processor)

    def shutdown(self):
        """Shuts down the log processors."""
        self._multi_log_record_processor.shutdown()
        if self._at_exit_handler is not None:
            atexit.unregister(self._at_exit_handler)
            self._at_exit_handler = None

    def force_flush(self, timeout_millis: int = 30000) -> bool:
        """Force flush the log processors.

        Args:
            timeout_millis: The maximum amount of time to wait for logs to be
                exported.

        Returns:
            True if all the log processors flushes the logs within timeout,
            False otherwise.
        """
        return self._multi_log_record_processor.force_flush(timeout_millis)

Zerion Mini Shell 1.0